Korrekte Lösung der Schwingkreis-Preisfrage im FA 07 – 2023

Wir gehen aus von einem Reihenschwingkreis der Güte Q. Dieser hat eine Dämpfung, die durch den Dämpfungsgrad $D = \frac{1}{2O}$ bestimmt ist. Dafür gilt:

$$f = f_0 \sqrt{1 - \frac{1}{4Q^2}} = \frac{1}{2\pi\sqrt{LC}} \sqrt{1 - \frac{1}{4Q^2}}$$

Aus dieser Gleichung resultiert die Bestimmungsgleichung x für f, L, C und Q:

$$x^{6} - \frac{10^{6}}{4\pi^{2}}x^{2} + \frac{10^{6}}{16\pi^{2}} = 0$$

Das ist eine Gleichung 6. Grades. Mit der Substitution $y = x^2$ kann auf eine kubische Gleichung

reduziert werden:
$$y^3 - \frac{10^6}{4\pi^2}y + \frac{10^6}{16\pi^2} = 0$$

Daraus ergeben sich zwei positive, reelle Lösungen: $x_1 = 12,61...$ und $x_2 = 0,50000061.$ Die weiteren Lösungen der Gleichung sind für die Aufgabenstellung nicht relevant. Für die gesuchten Schwingkreisparameter ergeben sich also zwei Lösungen.

Lösung 1:
$$f = 12,61MHz$$
, $L = 12,61\mu H$, $C = 12,61pF$ und $Q = 12,61$ dabei ist $f_0 = 12,62MHz$ (Wert im FA) und $R = 79,2\Omega$

Lösung 2:
$$f = 0.50..MHz$$
, $L = 0.50..\mu H$, $C = 0.50..pF$ und $Q = 0.50..$ dabei ist $f_0 = 318.3MHz$ und $R = 2k\Omega$

Bei Lösung 1 bewirkt die Güte nur eine geringfügige Abweichung von f und f_0 . Bei Lösung 2 ist die Abweichung durch die schlechte Güte jedoch erheblich.